New Cure for Hair Growth NYC New York, NY

Scientists have found a new way to grow hair, one that they say may lead to better treatments for baldness.
Related

A Conversation With Angela Christiano: Living and Studying Alopecia (December 28, 2010)
Science Twitter Logo.

¶ So far, the technique has been tested only in mice, but it has managed to grow hairs on human skin grafted onto the animals. If the research pans out, the scientists say, it could produce a treatment for hair loss that would be more effective and useful to more people than current remedies like drugs or hair transplants.

¶ Present methods are not much help to women, but a treatment based on the new technique could be, the researchers reported Monday in Proceedings of the National Academy of Sciences.

¶ Currently, transplants move hair follicles from the back of the head to the front, relocating hair but not increasing the amount. The procedure can take eight hours, and leave a large scar on the back of the head. The new technique would remove a smaller patch of cells involved in hair formation from the scalp, culture them in the laboratory to increase their numbers, and then inject them back into the person’s head to fill in bald or thinning spots. Instead of just shifting hair from one spot to another, the new approach would actually add hair.

¶ The senior author of the study is Angela Christiano, a hair geneticist and dermatology professor at Columbia University Medical Center in New York, who has become known for her creative approach to research. Dr. Christiano’s interest in the science of hair was inspired in part by her own experience early in her career with a type of hair loss called alopecia areata. She has a luxuriant amount of hair in the front of her head, but periodically develops bald spots in the back. The condition runs in her family.

¶ In the mid-1990s, she sent photographs of her bald spots to researchers in Pakistan, hoping her plight would persuade them to collaborate with her on a study of a rare genetic disorder there that left people with no hair at all on their heads or bodies. Her strategy worked, and the joint effort identified the gene. In subsequent studies, Dr. Christiano and other colleagues identified multiple genes that play an important role in alopecia areata.

¶ In the current study, Dr. Christiano worked with researchers from Durham University in Britain. They focused on dermal papillae, groups of cells at the base of hair follicles that give rise to the follicles. Researchers have known for more than 40 years that papilla cells from rodents could be transplanted and would lead to new hair growth. The cells from the papillae have the ability to reprogram the surrounding skin cells to form hair follicles.

¶ But human papilla cells, grown in culture, mysteriously lose the ability to make hair follicles form. A breakthrough came when the researchers realized they might be growing the cells the wrong way.

¶ One of Dr. Christiano’s partners from Durham University, Dr. Colin Jahoda, noticed that the rodent papilla cells formed clumps in culture, but the human cells did not. Maybe the clumps were important, he reasoned. So, instead of trying to grow the cells the usual way, in a flat, one-cell layer on a petri dish, he turned to an older method called the “hanging drop culture.”